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Autoencoders and their Limitations

» Given a centered dataset xi, x5 - - - x, € RY with an empirical covariance matrix K,
an autoencoder consists of an encoder f : R? — R¥ and a decoder
g : R — RY In a linear autoencoder (LAE), f and g are linear maps.

» Conventional LAEs do not identify principal directions of the dataset.
» Autoencoders are sometimes described as " compressing” the data.

LAE with Schur-Concave constraint
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Figure: Compression Block Diagram

» Quantization assumptions:
> Dither: If Q() maps a real number to its nearest integer, then

R(z+¢)—c¢ Lz+4e fore~ Unif [—0.5, 0.5]

> To constrain number of bits, clip Wij to the interval
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> Number of bits to represent WJ-TX IS %Iog (4a2WjTKWj + 1).

» Goal: Minimize mean squared error (MSE) when W' x is quantized, subject to a
rate constraint on the number of bits required to represent quantized W ' x.

» Observe {WjTij}jzl — %Iog (4a2WjTKWj + 1) is Schur-concave.

Solve a more general nonconvex problem with any
Schur-concave constraint p.
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subject to R > p ({WJ-TKWj}jzl) ;

Theorem (Optimal LAE with Schur-concave constraint)

For Schur-concave p : R%, — R~q and R > 0, the set of matrices
whose nonzero columns are eigenvectors of the covariance matrix K
is optimal. If p is strictly Schur-concave and K contains distinct
eigenvalues, this set contains all optimal solutions.

Remarks

» W = US, where U is eigenvector matrix and S is an unknown diagonal matrix.

d
> Let p(x) = ) ps(x), where pg : Rsg — Ry,
i—1
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Conventional LAE

» Conventional LAE: W, T € RY%% where k is a parameter.

» Principal component analysis (PCA): W = T = Uy, where Uy is a matrix with top
k eigenvectors as columns.

» PCA is a global optimal solution, but not unique.
We recover conventional LAEs by penalizing dimension,

psi(x) =1[x > 0].

The optimal encoder is given by
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where top min (| R], d) entries are co. Since latent variables are
quantized in our formulation, PCA with parameter k is equivalent to
S with top k diagonal entries equal to oo.

Principal Bit Analysis (PBA)

Solve original problem by choosing

1
sl (x) = 5 log (lzx + 1)

o

» ~ = 1: classical waterfilling solution

» v € (1,2]: convex optimization problem

» ~ > 2: nonconvex optimization problem
PBA takes as input A > 0 and outputs the optimal rate-distortion
Lagrangian solution. By sweeping A, we obtain the rate-distortion
curve.

Variable-Rate Compression

» Ballé et al. [1] defined an autoencoder-based variable-length compressor objective
called nonlinear transform coding (NTC),

g(QF(x) +2) =23 + \H(QF(x)+2) —<l).  (3)

» Assuming a Gaussian source, linear f and g, and under independent encoding of
each dimension, the NTC Lagrangian is

d
inf B [ = T (W +2)[5] + A+ D2 b (wlx+ (1) (4)

Theorem: Under the above assumptions, any W that achieves the
infimum has all its nonzero columns as eigenvectors of K.

Experiments

» We compare a PBA-based fixed-rate compressor with PCA. For images, we

compare against JPEG, JPEG2000. For audio, we compare against AAC.

» We compare across three metrics. 1) SNR = 10 - log;o (P/MSE), 2) Structural

similarity index (SSIM/MS-SSIM) 3) Performance on downstream tasks,
specifically classification accuracy.
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Figure: Left: CIFAR-10, Right: Free Spoken Digits Dataset
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SSIM Performance
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Figure: Left: CIFAR-10, Right: MNIST

Classification Accuracy Performance
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Figure: Left: CIFAR-10, Right: MNIST




