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Motivation

• Small data-hungry computing devices → small storage capability.

•Entropy estimation: Optimal sample complexity given by [1, 2, 3].
•Streaming algorithms: Estimate entropy of empirical distribution of a

stream [4, 5].
• We initiate study of memory-sample trade-offs in statistical inference tasks.

Goal

Given X1, X2, . . . , Xn
i.i.d∼ from a k-ary distribution p and ε > 0, estimate the

entropy H(p) upto ±ε with probability atleast 2/3 using a constant number of
words of memory.

Jargon

Entropy:
H(p) :=

∑
x∈X

p(x) log (1/p(x)) .

Sample Complexity: Fewest samples an algorithm requires to solve a statistical
inference task.
Word of Memory: log k + log

(
1
ε

)
bits.

Space Complexity: Number of words required to implement an algorithm.

Algorithm Samples Space (in words)

Sample-Optimal [1], [2, 3] Θ
(

k

ε log k
+ log2 k

ε2

)
O

(
k

ε log k
+ log2 k

ε2

)

Streaming [4, 5] O

(
k

ε
+ log2 k

ε2

)
O

log2(kε) log log(kε)
ε2


General Intervals Algorithm O

(
k log2(1/ε)

ε3

)
20

Table: Sample and Space Complexity for Estimating H(p).

Simple Algorithm

H(p) =
∑
x∈X

p(x) log (1/p(x)) = EX∼p [log (1/p(X))] .

• Draw X ∼ p.
• Estimate log(1/p(X)) from samples.

Algorithm 1 Simple Algorithm
Require: Accuracy parameter ε > 0, a data stream X1, X2, . . . ∼ p

1: Set
R← O

(
log2(k/ε)

ε2

)
, N ← O

(
k

ε

)
, S ← 0.

2: for t = 1, . . . , R do
3: x← next element in stream.
4: Nx← # occurences of x in next N samples.
5: S = S + log

(
N

Nx+1

)
.

6: Ĥ = S/R.

Sample Complexity: (N + 1)R = O

(
k log2 (k/ε)

ε3

)
Superlinear :(

Interval Based Algorithms

Simple Algorithm treats each symbol equally. But if p(x) is high, N need not be high.
1 Partition [0, 1] into intervals

a0 = 0 a1 · · · aT−j aT−j+1 aT−1 aT = 1

IT Ij I1

2 Randomized algorithm A: A(x) = Ij w.p. pA(Ij | x).
3 Contributions from each interval:

H(p) =
T∑
j=1

pA(Ij)Hj, where Hj = EX∼pA(.|Ij)
[log(1/p(X))] .

4 Estimate pA(Ij), Hj separately using constant words.

Algorithm 2 Interval Based Algorithm
Require: Accuracy parameter ε > 0, a data stream X1, X2, . . . ∼ p

1: Set {counti, Si = 0}T1 , {Ni, Ri, }T1 .
2: for i = 1 · · ·T do
3: p̂A(Ii)← Estimate of pA(Ii).
4: for t = 1, . . . , Ri do
5: x← next element in stream.
6: if A(x) = Ii then
7: counti = counti + 1
8: Nx,i← # occurences over next Ni samples.
9: Si = Si + log Ni

Nx,i+1.

10: Ĥi = Si/counti.
11: Output

T∑
i=1
p̂A(Ii)Ĥi.

Two Interval Algorithm

0 ` = (log k)β
k

1

I2 I1

Key Ideas:
•R2 < R1, N2 > N1.
•Clipping. Since max probability in I2 is `, w.h.p Ĥ2 will be more than log 1

4`.

Ĥ2 = max
{

log
(

N2

Nx,2 + 1

)
, log 1

4`

}
.

• I1 : Least probability is (log k)β
k =⇒ N1 = O

(
k

ε(log k)γ
)
. Range of Ĥ1 roughly

log k =⇒ R1 = O
(

log2(k/ε)
ε2

)
.

• I2 : Range of Ĥ2 roughly log(kl) =⇒ R2 = O
(

log2(log k/ε)
ε2

)
. N2 = O

(
k
ε

)
.

Sample Complexity.

O (N1R1 + N2R2) = O

(
k(log(log k/ε))2

ε3

)
Superlinear :(

General Intervals Algorithm

Key Idea. Increase T to log∗ k = mini
{
i ∈ N s.t. log(i) k < 1

}
. RT becomes constant

since 1 ≤ (log(T−1) k)β
k ≤ eβ

k .

0 (log(T−1) k)β
k

· · · (log(i) k)β
k

(log(i−1) k)β
k

· · · (log k)β
k

1

IT Ii I1

Ni = O

(
k

ε(log(i) k)γ

)
, Ri = O

(log((log(i−1) k)/ε))3

ε2

 i ∈ [T − 1]

NT = O

(
k

ε

)
, RT = O

(
log2(1/ε)

ε2

)

Future Work

• Lower bounds on space for sample-optimal algorithms ? Is there a sample-optimal
algorithm that uses poly(log k) words of space ?

• Lower bounds on sample complexity of space limited algorithms ?
• Streaming distribution property testing
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